Proteins 2005 (In Press)

Performance of the First Protein Docking Server ClusPro

in CAPRI Rounds 3-5

Stephen R. Comeau¹, Sandor Vajda¹ and Carlos J. Camacho^{2*}

¹Bioinformatics Graduate Program, Boston University,

44 Cummington St., Boston, MA 02215, USA

and

²Department of Computational Biology, University of Pittsburgh,

200 Lothrop St., Pittsburgh, PA 15261, USA.

*Corresponding author: ccamacho@pitt.edu

Keywords: docking; protein interactions; complex structure; supramolecular assembly.

Running title: Automated Prediction of Protein Interactions

Abstract

To evaluate the current status of the protein-protein docking field, the Critical Assessment of PRediction of Interaction (CAPRI) experiment came to life. Researchers are given the receptor and ligand three-dimensional coordinates before the co-crystallized complex is published. Human predictions of the complex structure are supposed to be submitted within three weeks, whereas the server *ClusPro* has only 24 hours and does not make use of any biochemical information. From the 10 targets analyzed in the second evaluation meeting of CAPRI, ClusPro was able to predict meaningful models for 5 targets using only empirical free energy estimates. For two of the targets, the server predictions were assessed to be among the best in the field. Namely, for Targets 8 and 12, *ClusPro* predicted the model with the most accurate binding site interface and the model with the highest percentage of native-like contacts, among 180 and 230 submissions, respectively. After CAPRI, the server has been further developed to predict oligomeric assemblies, and new tools now allow the user to restrict the search for the complex to specific regions on the protein surface, significantly enhancing the predictive capabilities of the server. The performance of *ClusPro* in CAPRI3-5 suggests that clustering the low free energy (i.e., desolvation and electrostatic energy) conformations of a homogeneous conformational sampling of the binding interface is a fast and reliable procedure to detect protein-protein interactions and eliminate false positives. Not including targets that had a significant structural rearrangement upon binding, the success rate of ClusPro was found to be around 71%.

INTRODUCTION

The goal of traditional protein-protein docking algorithms is to take the threedimensional coordinates of two independently crystallized proteins which are known to interact, and derive a model for the co-crystallized structure.¹⁻³ Billions of putative complexes are evaluated by scanning the rotational and translational space between the two proteins, often using the fast Fourier transform technique⁴ to expedite the calculation. Then, these putative complexes are subjected to various discrimination techniques in order to eliminate false positive structures, in search of the high affinity complex.⁵⁻⁷

In order to evaluate the current status of the field, the Critical Assessment of PRediction of Interaction (CAPRI) experiment came to life.⁸ Computational researchers are given the three-dimensional coordinates of the unbound structures before the co-crystallized complexes are published. The researchers are then given a few weeks to dock the two structures together, and can use any information necessary, including biological information and literature searches. In just a couple of years, this initiative has led to significant advances in the field, as well as to the independent validation of the different techniques. In rounds 1 and 2 of CAPRI, Camacho and Gatchell⁹ produced some of the best model structures, appropriately distinguishing between near-native and false positive structures. Based on these promising results, we implemented our filtering and discrimination methods for rigid body docking algorithm as a public server named ClusPro¹⁰ (http://structure.bu.edu). The ClusPro web server is a fully automatic algorithm that rapidly docks, filters, and ranks putative protein complexes within a short amount of time using only the given structures of the component proteins and thermodynamic considerations. One important motivation for developing the *ClusPro* server was to eliminate human intervention, which biases predictions against how well the actual docking algorithms perform. Indeed, in almost all CAPRI targets there was some relevant biochemical information pointing to the binding site, and from the submitted models it is not possible to determine how well a particular method would have performed without human intervention.

We report on the results of the automated server *ClusPro* in rounds 3-5 of the Critical Assessment of Protein Interactions (CAPRI) experiment. *ClusPro* was the only automated server participating on this experiment, and the only docking technology that claims finding near-native complex structures using only thermodynamic considerations. *ClusPro* submitted near-native structures for 5 of the 10 targets. In addition, the server submitted a good prediction for a homology modeling target that was eventually cancelled because human predictors had access to published information. Three of the targets missed by *ClusPro* had significant structural rearrangement upon binding, and required extra information for them to be predicted. A novel target of CAPRI consisted of a trimeric form of the Tick BEV envelope protein.¹¹ This posed a new challenge to the computational modeling of protein interactions, as three monomeric structures needed to be docked together in order to obtain the final outcome. Motivated by this target, we have further developed the server, and implemented a new algorithm to predict multimers with different types of symmetry.

METHODS

Rigid Body Docking. Using the ClusPro server one has the option of selecting DOT^{12} or ZDOCK¹³ to perform the initial rigid body docking. Both methods are based on the Fast

Fourier Transform (FFT) correlation approach⁴ that systematically evaluates a simple grid-based scoring function over billions of relative orientations of the two proteins. With DOT we use a shape complementarity score, whereas ZDOCK scoring function includes a combination of shape complementarity, Coulombic electrostatics, and desolvation free energy based on Zhang et al. (1997) atomic contact potential.¹⁴ The latter has already been shown to be important for finding native-like complex structures.⁷ As default, ZDOCK retains 2,000 structures. In our methodology, we use these FFT-based tools to rapidly generate a large number of receptor-ligand conformations with good shape complementarity (and in the case of ZDOCK, with relatively favorable electrostatics and desolvation values). Usually the top 20,000 structures are retained for further analysis.

*Filtering Using Empirical Free Energy Functions.*⁷ Since the dominant interactions for protein-protein association are electrostatics and desolvation free energies, we have shown that selecting 2,000 structures from the initial 20,000 using empirical free energy estimates yields an appropriate sampling of the free energy landscape. We compute the electrostatic energy using a Coulombic model with a distance dependent dielectric of 4*r*. The desolvation free energy is computed using a knowledge-based atomic contact potential.¹⁴ As default, we retain the 1,500 structures with the best electrostatic energies and 500 structures with the best desolvation energies. The reason of retaining more structures with favorable electrostatics is that the electrostatic energy is much more sensitive to small perturbations in the coordinates than the desolvation term, and restricting consideration to 500 structures with the best calculated values of electrostatics generally leads to losing a number of good solutions. Since ZDOCK already screens 2,000 structures based on a similar scoring function, we keep them all without re-scoring.

*Clustering the 2,000 filtered docked conformations.*⁹ The final step of the *ClusPro* server consists in clustering the generated 2,000 docked conformations on the basis of their pairwise ligand binding site root-mean-square-deviation (RMSD) values. Note that all conformations have the receptor fix in the origin of the coordinate system. The default clustering radius is 9 Å. To calculate pairwise binding site RMSD values, we select the residues of the ligand that are within 10 Å of the receptor, and for each docked conformation compute the RMSD of these residues with the same residues in every other docked ligand Conformation. The 2,000 conformations are then clustered using the binding site RMSD as the distance measure, i.e., on the basis of the 2,000×2,000 RMSD matrix, using a standard greedy algorithm The predictions are ranked according to the size of the clusters. It is assumed that larger clusters indicate wider and deeper free energy minima, and that such minima have higher likelihood to correspond to the binding site.¹⁵

Predicting assemblies of homo-N-mers (Comeau and Camacho, 2005, submitted). Target 10 in CAPRI involved the prediction of a homotrimer.¹¹ Motivated by this Target, we developed a general algorithm to predict the assembly of homo-N-mers, based solely on the structure of the monomer and the number of monomers N. The method builds N-mers of different symmetries, clusters the assemblies using a clustering radius of 5 Å pairwise RMSD, and ranks the clusters according to the number of complexes found in the free energy filtered set of 2,000 structures. The actual predictions correspond to the structure with best symmetry and no overlaps among the N proteins from each ranked cluster. The algorithm has been implemented as part of *ClusPro*. Users upload the structure of a monomer and the numbers of monomers involved in the assembly (between 2 and 6).

Note that the actual symmetry does not have to be specified. The method predicts both the symmetry and optimal structure. For instance, in the case of a tetramer, the method would predict if the assembly forms a 4-fold symmetry structure or a dimer of dimers.

RESULTS

The predictions submitted by the server *ClusPro* are summarized in Table 1. We emphasize that these results are fully reproducible by simply uploading the targets to the server. *ClusPro* predicted a near-native complex for 5 of the 10 targets. A sixth target (T17) was also predicted correctly, but the CAPRI management did not evaluate this Target. Three of the targets (T9 a dimer; T10 a trimer; and T11 a distant homology model) had significant structural rearrangement upon binding and were not predicted correctly by the server. In the original validation of *ClusPro*¹⁰ we obtained a success rate of 74% for complexes that do not undergo significant rearrangement upon binding. Removing targets 9, 10 and 11 from the statistics, the success rate of *ClusPro* is 71% consistent with our earlier claim. In what follows with discuss each of the targets.

Target 8: Nidogen G3 domain - Laminin EGF modules 3-5 complex.¹⁶ This target was of moderate difficulty¹⁷ since the binding surface was somewhat polar and not very large. Nevertheless, model Nr. 3 (shown in Fig. 1A) predicted by the server resulted in the best interface RMSD among all 180 models submitted. It is important to emphasize that this prediction was obtained by simply uploading the receptor and ligand target structures in the server, and it only took a couple of hours to predict.

Target 9: LicT dimer.¹⁸ This target had a significant change between the unbound and the bound conformation (13Å RMSD). Since *ClusPro* is a rigid-body approach, it was

not able to predict the complex. At a minimum, automating the prediction of these types of targets would require to assume flexibility at the hinges of the structure.¹⁹

Target 10: Tick-borne encephalitis virus glycoprotein E trimer.¹¹ The TBEV envelope protein had been previously crystallized in a dimeric form,²⁰ but in acidic pH the dimers dissociate and form trimers. Prior to the publication of the crystal structure of the trimeric complex, the envelope protein served as one of the targets for the CAPRI experiment, using monomers of the dimeric structure as the given component proteins. Because of this target, we developed a general algorithm to predict the assembly of homo-N-mers. By uploading the structure of one monomer and setting the number *N* equal to 3, the server predicts a structure that is 4.1Å away from the crystal. The prediction is shown in Fig. 1C. In order to obtain this prediction, we also removed the C-terminal domain that was known to differ significantly between the bound and unbound monomers. These two structures are 12Å RMSD apart.

At the time target 10 was given, the full implementation of the algorithm was not ready, and the scoring function was surface complementarity alone. The structure in Fig. 1C was then ranked 12th. It was only after the deadline that we implemented the scoring function based on the clustering of low free energy docked conformations (similar to the one used in traditional docking).

Target 11: Cellulosome Cohesin-Dockerin (homology model) complex.²¹ The homology model built for dockerin was 5 Å RMSD away from the crystal, and *ClusPro* was not able to find any docked conformation with reasonable affinity between the receptor and the homology model.

Target 12: Cellulosome Cohesin-Dockerin complex.²¹ For Target 12 the bound structure of the dockerin protein was provided. Uploading the target structures "as is" on the server led to the prediction in Fig. 1B. As for Target 8, the *ClusPro* prediction for Target 12 is a high quality model compared to most manual predictions, having the best ratio of native contacts (see Table 1). Since this Target was given after Target 11 was closed, we knew that association was mediated by desolvation forces. Thus, for this target only we run *ClusPro* using ZDOCK as screening method. ZDOCK has a stronger bias to select hydrophobic contacts than DOT (see Methods).

Target 13: *Toxoplasma gondii* surface antigen 1 (SAG1) - Fab complex.²² The server predicted two good models of this antibody-antigen complex, Models Nr. 2 and Nr. 4. Model 4, shown in Fig. 1D, has a slightly higher interface RMSD than Model 2 listed in Table 1, but the figure is more illustrative since it shows how the antigen correctly binds to one of the binding grooves and misses the second one.

Target 14: Protein Phosphatase 1 - Myosin phosphatase targeting subunit 1 (MYPT1) complex.²³ *ClusPro* was unable to predict this complex because the arm of the MYPTI structure wrapped too tightly around the phosphatase, constraining the complex structure to such an extent that our method failed to have a good enough sampling of the binding area. Thus, the clustering procedure failed to get good predictions.

Target 15: Colicin D nuclease - Immunity D complex.²⁴ Target 15 was a relatively difficult target¹⁷ because the binding site was polar, and the targets had no side chains. Blind predictions on these types of targets are usually quite challenging. We uploaded the targets after building the side chains using CHARMm.²⁵ Without using any information

regarding the location of the catalytic site, *ClusPro* predicted the model with the third best ratio of native contacts among all the participants (see Fig. 1F).

Target 16: Xylanase (*A. nidulans*) – XIP-1 inhibitor complex.²⁶ The structure of the Xylanase was built based on a Xylanase from *P. simplicissimum*, a close homolog (PDB code 1BG4), using the server *Consensus*.²⁷ *ClusPro* did not submit a good structure within the top 10 models. However, the model ranked 22^{nd} had the prediction shown in Fig. 1G. We note that the server has the option of requesting as many as 30 models for a given target. Most of the false positives did not block the active site.

Target 17: Xylanase (*P. funiculosum*) – XIP-1 inhibitor complex.²⁸ The structure of the Xylanase was built based on the homolog Xylanase from *A. niger* (PDB code 1UKR), using the server *Consensus*²⁷ and side chains were modeled using molecular dynamics.²⁹ The top model by ClusPro is shown in Fig. 1H. ClusPro readily identified the binding region and correct contacts. The model is rotated around the main contacts by 40° or so. The reason for this rotation is that the homology model was missing the first two beta sheets, leaving exposed hydrophobes at the N-terminal. The interaction between these residues and the inhibitor rotated the structure in order to have a larger contact area at the interface than that observed in the crystal.

Target 18: Xylanase (*A. niger*) – (*T. aestivum*) xylanase inhibitor complex.²⁹ *ClusPro* did not submit a good prediction for this target. The reason for this failure might be the fact that His374 in the inhibitor is likely protonated.

Target 19: Homology model of Ovine PrPc - Fab complex.³⁰ The homology model for the Ovine Prion was constructed using the server *Consensus*, and then CHARMm was

used to build the missing side chains. As shown in Fig. 1E, Model 2 from *ClusPro* was very close to the antibody-antigen complex structure.

DISCUSSION

The results of rounds 3-5 of CAPRI demonstrated that the server *ClusPro* is a fast and reliable predictor of protein-protein complexes, provided that the complex does not undergo a significant structural transformation upon binding. We have shown that for five of the seven such targets in rounds 3-5, our algorithm identified a native-like complex structure within the best 10 models, a 71% success rate. The robustness of the method is manifested on the fact that *ClusPro* produced meaningful models for all the targets the homology modeling targets with a close homolog in the PDB. Namely, for Targets 15, 16, 17 and 19 the server predicted native-like conformations within the top 10 models, For Target 16, a high quality model was ranked 22. Target 11 was also a homology modeling target but the template structure was different from the Target.

The server has also been further developed to allow modeling of multimeric assemblies. Given the number of monomers forming a multimeric complex and the structure of one monomer, the method predicts the symmetry and structure of the complex. The method was designed to scan all possible interactions, and select the models with the broadest free energy funnels that also satisfy the symmetry constraints without steric overlaps.

ClusPro has been validated as a technology capable of predicting protein complexes based solely in thermodynamic free energy estimates.

ACKNOWLEDGMENTS

This research has been partially supported by grant GM61867 from the National Institute of Health to Boston University. As of 9/2004, CJC has been funded by the University of Pittsburgh.

REFERENCES

1. Camacho CJ, Vajda S. Protein-protein association kinetics and protein docking. Curr. Opin. Struc. Biol. 2002;12:36-40.

2. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002;47:409-443.

3. Smith GR, Sternberg MJE. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 2002;12:28-35.

4. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem A, Aflalo C, Vakser IA. Molecular surface recognition - determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci., USA 1992;89:2195-2199.

5. Weng Z, Vajda S, DeLisi C. Prediction of protein complexes using empirical free energy functions. Protein Science 1996;5:614-626.

6. Jackson RM, Gabb HA, Sternberg MJE. Rapid refinement of protein interfaces incorporating solvation: Application to the docking problem. J Mol Biol. 1998;276:265-285.

7. Camacho CJ, Gatchell DW, Kimura SR, Vajda S. Scoring docked conformations generated by rigid-body protein-protein docking. Proteins 2000;40:525 – 537.

8. Janin J, Henrick K, Moult J, Ten Eyck L, Sternberg MJ, Vajda S, Vakser I, Wodak SJ. CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 2003;52:2-9.

9. Camacho CJ, Gatchell DW. Successful discrimination of protein interactions. Proteins

10. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. *ClusPro*: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 2004;20:45-50.

11. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 2004;4:728-738.

12. Ten Eyck LF, Mandell J, Roberts VA, Pique ME. Surveying molecular interactions with DOT. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference. (ed. Hayes, A. and Simmons, M.), ACM Press, New York.

13. Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein docking algorithm. Proteins 2003;52:82-87.

14. Zhang C, Vasmatzis G, Cornette JL, DeLisi, C. Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol. 1997;267: 707–726.

15. Camacho CJ, Weng ZP, Vajda S, DeLisi C. Free energy landscapes of encounter complexes in protein-protein association. Biophys. J. 1999;76:1166–1178.

 Takagi J, Yang Y, Liu JH, Wang JH, Springer TA. Complex between nidogen and laminin fragments reveals a paradigmatic beta-propeller interface. Nature 2003;424:969-974. 17. Vajda S, Camacho CJ. Protein-protein docking: is the glass half full or half empty? TIBS 2004;22:110-116.

18. Graille M, Zhou CZ, Receveur V, Collinet B, Declerck N, van Tilbeurgh H. Structure of the native and inactive LicT PRD from *B. subtilis*. 2005, submitted.

19. Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Benyamini H, Barzilay A, Dror O, Haspel N, Nussinov R, Wolfson HJ. Taking Geometry to its Edge: Fast Unbound Rigid (and Hinge-bent) Docking. Proteins 2003;52:107—112.

20. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995;375:275-276.

21. Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ, Fontes CM. Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 2003;100:13809-13814.

22. Graille M, Stura E, Bossus M, Muller BH, Letourneur O, Battail-Poirot N, Sibaï G, Gauthier M, Rolland D, Le Du MH, Ducancel F. Structure of the immunodominant epitope displayed by the surface antigen 1 (SAG1) of *Toxoplasma gondii* complexed to a monoclonal antibody. (Submitted)

23. Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R. Structural basis of protein phosphatase 1 regulation. Nature 2004;429:780-784.

24. Graille M, Mora L, Buckingham RH, Van Tilbeurgh H, De Zamaroczy M. Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein. EMBO J. 2004;23:1474-1482.

25. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983;4:187-217.

26. Roussel A. 2005 (Submitted).

27. Prasad JC, Comeau SR, Vajda S, Camacho CJ. Consensus alignment for reliable framework prediction in homology modeling. Bioinformatics 2003;19:1682-1691.

28. Roussel A. 2005 (Submitted).

29. Rajamani D, Thiel S, Vajda S, Camacho CJ. Anchor residues in protein-protein interactions. Proc. Natl. Acad. Sci. USA 2004;101:11287-11292.

30. Sansen S, De Ranter CJ, Gebruers K, Brijs K, Courtin CM, Delcour JA, Rabijns A. Structural basis for inhibition of Aspergillus niger xylanase by triticum aestivum xylanase inhibitor-I. J. Biol. Chem. 2004;279:36022-36028.

31. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer E, Rezaei H, Knossow M. Insight into the PrPC-->PrPSc conversion from the structures of antibodybound ovine prion scrapie-susceptibility variants. Proc. Natl. Acad. Sci. USA 2004;101:10254-10259.

FIGURES CAPTIONS

Figure 1: *ClusPro* predictions for (A) Target 8, (B) Target 12, (C) Target 10 (this prediction was not within the 10 submitted structures); the antibody-antigen complexes are shown in (D) Target 13 and (E) Target 19; and, the prediction for the homology model targets are shown in (F) Target 15, (G) Target 16, and (H) Target 17. For Targets 8 and 12, the models shown are among the best of all submissions. In red is the bound ligand, and in green is the model. The receptors are shown in cyan as solid models. For the antibody-antigen systems we have colored in yellow residues that were blocked from docking using the utility *block.pl* available from the *ClusPro* website. The figures were made using PyMOL (DeLano, W.L. The PyMOL Molecular Graphics System (2002) on World Wide Web http://www.pymol.org).

TABLE CAPTION

Table 1: Native-like models submitted by *ClusPro* to CAPRI3-5.

Table 1. Native-like models submitted by ClusPro to CAPRI3-5					
Target	ClusPro	$f_{nat}^{1}/$	Ligand RMSD	Interface RMSD	CAPRI
	Model No.	ranking ²	[Å]/ranking ²	[Å]/ranking ²	score
8	3	$0.455/4^{th}$	$6.29/2^{nd}$	0.48/1 st	**
12	9	0.927/1 st	$3.22/11^{\text{th}}$	$0.78/9^{th}$	***
13	2	$0.129/12^{\text{th}}$	14.376/ 11 th	2.987/ 12 th	*
15	8	$0.5/3^{rd}$	$6.04/5^{th}$	$1.83/4^{th}$	**
17^{3}	1	0.24	17	5.7	(*)
19	2	$0.296/10^{\text{th}}$	6.91/9 th	2.48/9 th	*
¹ f _{nat} is the ratio of native contacts; ² Ranking among all groups; ³ <i>ClusPro</i> prediction					
for T17; T16 and T17 were cancelled after submission.					

