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ABSTRACT 

 

We present results from the prediction of protein complexes associated with the first Critical 

Assessment of PRediction of Interactions (CAPRI) experiment. Our algorithm, SmoothDock, 

comprises four steps: first, we perform rigid-body docking using the program DOT, keeping the top 

20,000 structures as ranked by surface complementarity; second, we re-rank these structures 

according to a free energy estimate that includes both desolvation and electrostatics and retain the 

top 2,000 complexes; third, we cluster the filtered complexes using a pairwise RMS deviation 

criterion; finally, the twenty-five largest clusters are subject to a smooth docking discrimination 

algorithm where van der Waals forces are taken into account. We predicted targets 1, 6 and 7 with 

RMS deviations of 9.5, 2.4 and 2.6 Å, respectively.  More importantly, from the perspective of 

biological applications, our approach consistently ranked the correct model first (i.e., with highest 

confidence).  For target 5 we identified the binding region but not the correct orientation. Although 

we were able to find reasonable clusters for all targets, low affinity complexes (Kd < nM) were 

harder to discriminate.  For 4 out of 7 targets, the top models predicted by our automated procedure 

were among the best community-wide predictions.  

 

 

 

 

 

 

 



INTRODUCTION 

 

Finding physical interactions between proteins involved in common cellular functions is one of the 

most important problems in biology.  The first international Critical Assessment of Prediction of 

Interactions (CAPRI) experiment1 was designed to evaluate current computational approaches that 

address this critical problem.  Most methods used involved protein docking algorithms whose goals 

are to obtain models for the bound complex from the coordinates of the component molecules.  

 

Current docking methods evaluate a vast number of docked conformations by simple functions that 

measure single component correlation functions2,3.  However, in addition to near-native states, 

these methods produce many false positives, i.e., structures with good scores but high root-mean-

square-deviations (RMSDs).  Using scoring functions that better account for the chemical affinity 

between the individual molecules2 and refining the interacting surfaces4,5, conformations with 

RMSDs less than 10 Å are generally found within the top tens of structures, though the highest 

ranked complexes are often far from the native structure. Therefore, perhaps the most difficult 

challenge left in protein docking is the ability to discriminate native-like structures from these 

remaining false positives. 

 

Discrimination among decoys of protein complexes is very difficult given the high sensitivity of the 

scoring functions to small side chain and backbone displacements.  In Camacho and Vajda6, we 

described a novel method that yields a more physically meaningful free energy ranking of decoys.  

Specifically, the decoys are first clustered using a pairwise RMSD criterion7.  Then, each cluster is 

minimized according with a free energy target function that attempts to mimic the driving forces of 



the binding process at different length scales6,7.  In a test set of eight independently crystallized 

receptor/ligand structures this method was able to refine complexes that were around 10 Å away 

from the native complex to 2 Å RMSD by optimizing the free energies around each cluster7. This 

multi-cluster refinement procedure allows us to compare not individual decoys but the average free 

energies (see Eq. 1) of the optimized clusters.  We have argued that this average free energy should 

be a better estimate of the potential of mean force, and therefore a better discriminator of the 

binding sites with highest affinity7. 

 

Here, we report our results on the first blind experiment of prediction of protein interactions 

(CAPRI). We obtained very good results for four of the seven targets, obtaining not one, but at least 

two top community-wide models within the five submissions allowed for each target. Our 

automated platform involves four steps: (a) rigid-body docking; (b) filtering decoys; (c) clustering 

decoys; and, (d) refinement and discrimination of native-like clusters. 

 

 

MATERIALS AND METHODS 

 

The scheme used to predict complexes for round 1 (3 targets) and round 2 (4 targets) of the CAPRI 

experiment is outlined below.  In what follows, we briefly describe the four steps of our docking 

algorithm SmoothDock.  A more elaborate description of the methodology is published in another 

article in this issue (see, e.g., Ref. 7). 

 



Step 1: Rigid-body docking using the Fast-Fourier Transform (FFT) based program DOT 8,9 was 

performed for each receptor/ligand target.  The output of this program was the top 20,000 

receptor/ligand complexes sampled by the DOT program and ranked according to surface 

complementarity.  Any experimental constraint on the binding area was also imposed here. 

 

Step 2: Following the procedure detailed elsewhere4,7, for each complex we computed the effective 

desolvation and electrostatic binding affinity between receptor and ligand.  We then filtered the 500 

best desolvation energy10 and 1,500 best electrostatic energy4 complexes for a total of 2,000 

complex candidates. 

 

Step 3: We clustered the filtered complexes using a pairwise RMS deviation criterion, and retained 

the twenty-five clusters with the highest number of neighbors7.  For targets 1-3, the complexes 

were clustered using an all Cα RMSD criterion and a 10 Å cutoff, whereas for targets 4-7, we 

utilized a Cα binding site RMSD criterion and a cutoff radius of 7 Å.  All clustering was done in a 

hierarchical manner such that no overlaps occurred between distinct clusters. 

 

Step 4: Using 10 representative structures from each cluster, the smooth docking algorithm 

described in Camacho et al.6 was used to optimize our free energy function around each cluster. We 

submitted the top ranked complexes from those clusters that converged to the lowest free energies 

as estimated by Equation 1: 

 

∆G= Eelec+Edesolv+Evdw                      (1) 

 



RESULTS 

 

A summary of our top predictions is given in Table 1.  For targets 1, 6 and 7, we obtained low 

RMSD structures with respect to the co-crystallized complex structures.  For target 5, our top three 

predictions were near the binding site (see Table 1).  In what follows, we discuss in detail the 

application of the SmoothDock algorithm to each target.   

 

Target 1: Hexameric Hpr kinase/phosphotase and phosphocarrier Hpr11. 

From the literature provided for this target11, we learned that Hpr kinase/phosphotase (HprK/P) 

catalyzes the ATP-dependent phosphorylation of Ser46 in Hpr.  HprK/P also contains the 

characteristic P-loop nucleotide binding domain11 at the interface between two monomers.  This 

observation allowed us to concentrate on 1/6 of the total surface area of the receptor.  Namely, the 

rigid-body docking in Step 1 of the method was performed using only the solvent accessible 

surface area of two of the six chains of the hexamer, chains A and B of HprK/P.  Furthermore, in 

Step 2, we filtered out all the hits that overlapped with missing chains C, D, E and F of HprK/P. 

 

The fifth largest cluster center obtained from the top 2,000 free energy structures had a RMSD with 

respect to the native structure of 5.86 Å.  Figure 1 shows the free energy minimization of the top 

five clusters.  Our multi-cluster refinement procedure (Step 4) successfully refined cluster 5 (solid 

line in Fig. 2) to the lowest free energy as measured by Eq. 1.  However, upon refinement the 

cluster center moved away from the native structure to around 9 Å RMSD.  The marked increase in 

the RMSD of this structure was caused by the significant differences between the target and the 

crystal structures of HprK/P, mainly a misoriented helix and a missing loop on the binding surface 



of the receptor.  Model 2 was also a very reasonable model with a final RMSD of 11.5 Å, and 

Models 3 and 4 had approximately 10% of the correct contacts at the interface and RMSDs of ~17 

Å RMSD from the native state.  The fifth model (Fig. 1) was not submitted because its cluster had 

an average free energy almost 5 kcal/mol higher than the average free energy of the fourth cluster.  

 

Targets 2 and 3: Viral capsid VP6 domain from Bovine rotavirus and Fab antibody12,  

and X31 Flu hemagglutinin and Fab HC6313. 

The sizes of these receptors, more than 1,100 residues each, presented huge challenges to our 

method, which has been developed and tested on proteins typically consisting of no more than 200 

residues6,7.  At the time of Round 1 of CAPRI, our only choice was to chop the receptors into three 

domains – top (binding site), middle, and bottom – and run the SmoothDock algorithm for each of 

the three domains separately.  We filtered out all hits that overlapped with missing parts of the 

receptor.  The best clusters obtained after Step 3 ranked second when docking to the top domains, 

with RMSDs of 13.5 and 7.36 Å for Targets 2 and 3, respectively.  However, after discrimination 

the free energy estimate of these clusters was 8 kcal/mol or higher than the top clusters.  Hence, 

none of these clusters met our selection criterion. 

 

For Target 2, two clusters converged to free energies much lower than the other clusters, whereas 

for Target 3 we found only one cluster with significantly lower free energy than the rest. We 

submitted two models from each of these clusters, i.e., four models for Target 2 and two models for 

Target 3.  It is interesting to note that the complexes selected by the blind search were found to 

have better estimated energies than the crystal structures themselves (Table 2). Almost every 

measure ranks the free energies of the predicted models lower than those of the crystal structures.  



The apparent failures of our method are partially rationalized by the large cavities observed at the 

interfaces of the complex crystal structures.  These cavities are most likely filled with structural 

water molecules that, for the most part, are neglected by our empirical free energies. As shown in 

Table 2, almost every free energy estimate fails to correctly discriminate the native structure 

indicating that the origin of the binding affinity for these complexes is not yet well understood.  

 

Targets 4-6: Three camelid VHH domains in complex with porcine pancreatic alpha-

amylase14.   

Camelids produced functional antibodies devoid of light chains and CH1 domains14.  Targets 4 and 

5 bound outside the catalytic site with almost no inhibition of the amylase activity.  Surprisingly, a 

large number of framework residues are involved in the interactions of two of the VHHs with 

amylase. This unexpected behavior adversely affected our predictions for these targets since we 

disregarded clusters whose primary interaction sites did not involve at least one of the 

Complementary Determining Regions (CDRs).  

Target 4: For this target the only clusters that involved CDRs were near the catalytic site.  

Consequently, none of our predictions were close to the crystal structure. In particular, we had a 

cluster center 12.5 Å RMSD away from the complex that was deemed not viable and therefore 

discarded before refinement (Step 4 of the algorithm). Given the low affinity found for this 

complex (Kd = 230 nM14), it is unlikely that our free energy estimate would have distinguished this 

complex from noise. 

Target 5: The top three predictions for this target were close to the binding region.  Model 1 had 

one receptor/ligand correct contact (the most of any model ranked first by its respective predictors).  

Model 2, with an RMSD of 26 Å with respect to the crystal structure, buried the highest number of 



residues involved in the bound complex – a total of 35, 22 (out of 29) receptor and 13 (out of 25) 

ligand, residues.  Finally, Model 3 had 7 (out of 64) correct contacts (there was only one model 

with more contacts, i.e., 10).  Although these models failed to have the correct orientation, they 

ranked among the best predicted models for this target.  Finally, we should note that the affinity of 

this complex was rather poor, around 24 nM14. 

Target 6: For this target, SmoothDock worked very well as the affinity of this complex was found 

to be in the nM range14, i.e., we observed a large energy gap that led to a better signal-to-noise ratio 

(see Fig. 1).  Thus, the energetic discrimination of the best complexes was straightforward.  After 

clustering (Step 3), the center of the sixth cluster was found to have an RMSD of 7.24 Å from the 

native structure.  Refinement (Step 4) improved the ranking of this cluster to No. 1 (Fig. 1) with a 

final RMSD of 2.4 Å.  The second best cluster resulted in a 6.6 Å RMSD prediction.  However, 

given the similarity of this prediction with our top-ranked structure, we submitted this structure as 

our 4th best model (see also Table 1). 

 

Targets 7: T-Cell receptor (TCR) ß-chain in complex with Streptococcal pyrogenic exotoxin 

A15. 

In retrospect, Target 7 was perhaps the most difficult complex to predict.  Indeed, the best cluster 

center found in the blind search had an RMSD of 19 Å with respect to the crystal.  In general, we 

have found that clusters that are further than 15 Å from the native structure are not discriminated 

well by SmoothDock.  However, since we found a close homologue, 1SBB16, for this cluster in the 

Protein Data Bank17, we added this specific structure as its own cluster for refinement.  We 

submitted this ad hoc optimized structure as our first submission, obtaining the best community-

wide RMSD.  The best cluster did improve somewhat, and after refinement, we submitted the 



structure closest to the homologue, i.e., Model 2 with an RMSD of 8.3 Å.  Based on our free energy 

estimate, Eq. 1, these two models were not ranked higher than Models 3-5, but we biased our 

submissions toward models similar to the 1SBB homologue. 

 

Although a completely blind prediction would have failed for this complex, it is fair to say that an 

unbiased manual intervention could have nevertheless resulted in a reasonable prediction.  Indeed, 

our models selected by free energy alone (Models 3-5) had some red flags of their own.  For 

example, the two largest contributors to the binding free energy on Model 3 are the N-terminal 

residues ASP1 and ASP3.  Thus, given the high mobility associated with the protein termini it 

would have been reasonable to disregard this complex altogether.  Model 4 binds to the membrane 

bound substrate of the TCR, hence it was also an unlikely candidate. Finally, Model 5 does not 

involve the CDRs of the T-cell receptor in its binding at all. At this point, we have not hard wired 

these types of constraints in our automated technique. 

  

CONCLUSIONS: Lessons from CAPRI 

 

A natural question to ask is, “Are automated docking methods more accurate than procedures using 

manual intervention?”  We found that the only benefit from human intervention is to implement 

known biochemical constraints that might be available for a given target, e.g., the restrictions 

imposed by the P-loop binding domain for HprK/P in Target 111, and the binding interface of the 

homologue 1SBB for Target 716.  Indeed, the one target for which we arbitrarily biased the search, 

Target 4, resulted in a complete failure to predict even a single near-native complex.  

 



A disappointing result from CAPRI was that, despite finding complexes with both good energies 

and shape complementarities (Table 2), we fail to predict near-native complexes for Targets 2 and 

3. We do not yet understand these observations, though one explanation may be the shortcomings 

of quantitative estimates of the binding free energy. In retrospect, we conclude that the best strategy 

to predict protein interactions is an unbiased (other than biochemical constraints) search and 

discrimination of protein complexes. 

 

The most important lesson from the first CAPRI experiment has been the validation of our 

automated prediction of protein interactions algorithm SmoothDock.  For 4 of the 7 targets, we 

produced some of the best predictions community-wide.  Interestingly, for all these targets we had 

more than one good prediction ranked in our top five models.  More importantly, from a biological 

and experimental perspective, for three of these targets we ranked our best prediction first (with 

highest confidence). 
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Figure and Table Captions 

 

Fig. 1. Free energy refinement and discrimination of Target 1 and Target 6. The average total free 

energy (Eq.1) of the top 10 best ranked complexes is plotted as a function of the number of 

sampled structures, for the top clusters that converged to the lowest free energies in Step 4 of the 

SmoothDock algorithm.  We note that at the beginning of the plot, vdW interactions are almost 

negligible, thus it is possible for the total free energy (which includes the vdW energy) to increase 

at the beginning of the refinement process.  The solid lines correspond to the clusters ranked No. 1. 

The dotted lines correspond to the best ranked clusters not submitted. For Target 6, the long-dashed 

line corresponds to the cluster ranked No. 2, though it was submitted as model 4. 

 

Table I.  aNumber of the model predicted by the SmoothDock algorithm.  A value of one indicates 

that the model was our best a priori prediction for that target.  bThe best RMSD of all top 

submissions, i.e., models submitted 1st by each of their respective predictors, and the best RMSD of 

all submissions regardless of the order in which they were submitted.  cThe highest number of 

correct contacts predicted for all top submissions and for all submissions regardless of the order in 

which they were submitted.  dRankings of our best predictions relative to the top submissions (top 

row), and to all of the predicted complexes (bottom row).  Values are shown for RMSD and correct 

contacts.  eRMSDs were not calculated if no near-native complexes were predicted.  fNo good 

models were found for this complex.  gOur second submission for this target correctly identified 

22/29 and 13/25 of the ligand and receptor binding site residues. 

 



Table II. aInternal energy as calculated using CHARMM 19 parameters18.  bPoisson-Boltzmann 

Equation as calculated by CONGEN19.  cAnalytical Continuum Electrostatics potential20.  dInternal 

Coordinate Mechanics5.  eBinding energies were calculated for site HL on the native receptor.  

fBinding energies were calculated for site HL on the native receptor. 
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Table I.  Comparison of CAPRI Predictions  
   Our Submissions  Community Submissions  

ID Receptor Ligand Ranka RMSD 
(Å)           

Correct 
contacts 

 Best RMSDb

(top/all) 
Correct contactsc

(top/all)  Rankingsd 

1 1JB1 1SPH 1                            
2 

9.5               
11.5 

11/52   
8/52  9.5                                  

7.5 
12/52                          
17/52 

1st/2nd                
3rd/3rd 

2 1QHD Bound Fab 1                               
2 

74.75                        
37.01 

0/52            
2/52  6.3                                           

2.3 
20/52                      
50/52 

Lower 50% 
in all cases 

3 2VIU Fab HC63 1 57.16 0/63  ---
e                          

4.6 
6/63                           
45/63 

Lower 50% 
in all cases 

4 1PIF Ig VH 
Domain 1 

1            
4 

54.53                
38.07 

0/58              
0/58  ---                                                 --- 

0/58                        
1/58 n/af 

5 1PIF Ig VH 
Domain 2 

1             
2g          
3 

35.92      
26.59       
32.39 

1/64           
0/64           
7/64 

 ---                                             --- 
1/64                      
10/64 

---/1st                      
---/2nd 

6 1PIF Ig VH 
Domain 3 

1 
4 

2.42       
6.64 

54/65 
34/65  2.42                              

0.7 
54/65                      
60/65 

1st/1st                 
6th/3rd 

7 1BEC 1B1Z 1             
2 

2.62      
8.36 

29/37 
20/37  2.62                          

2.62 
31/37                     
31/37 

1st/3rd                   
1st/3rd 

aNumber of the model predicted by the SmoothDock  algorithm.  A value of one indicates that the model was 
our best a priori prediction for that target.  bThe best RMSD of all top submissions, i.e., models submitted 1st

by each of their respective predictors, and the best RMSD of all submissions regardless of the order in which 
they were submitted.  cThe highest number of correct contacts predicted for all top submissions and for all 
submissions regardless of the order in which they were submitted.  dRankings of our best predictions relative 
to the top submissions (top row), and to all of the predicted complexes (bottom row).  Values are shown for 
RMSD and correct contacts.  eRMSDs were not calculated if no near-native complexes were predicted.  fNo 
good models were found for this complex.  gOur second submission for this target correctly identified 22/29 
and 13/25 of the ligand and receptor binding site residues.  

Table II.  A Comparison of Free Energies for Targets 2 and 3 
ID Model Ca RMSD vdW ACP+Elec+vdW Inta PBEb ACEc ICMd 

  (Å) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) 

2e Native n/a -12845.40 -21680.89 4902.44 -19.58 -36445.85 -30.4 
 Oriented 0.68 -12995.80 -21924.63 4823.65 -1.93 -36520.48 -37.1 
 1 74.75 -13005.10 -21936.30 4829.52 -11.56 -36496.30 -45.8 
 2 37.01 -13006.70 -21931.37 4824.70 -2.10 -36507.10 -42.8 
 3 71.57 -12994.50 -21922.13 4824.38 -14.75 -36501.60 -46.8 
 4 40.1 -13006.20 -21937.14 4824.38 6.01 -36577.80 -31.1 
3f Native n/a -13641.10 -23121.51 5273.17 25.96 -41131.07 -15.7 
 Oriented 1.05 -13714.70 -23270.25 5211.72 11.24 -41701.64 -27.2 
 1 57.16 -13798.70 -23465.76 5215.01 5.29 -41785.63 -16.8 
 2 63.01 -13820.50 -23487.16 5225.04 -18.08 -41786.75 -36.4 
aInternal energy as calculated using CHARMM 19 parameters18.  bPoisson-Boltzmann Equation as 
calculated by CONGEN19.  cAnalytical Continuum Electrostatics potential20.  dInternal Coordinate 
Mechanics5.  eBinding energies were calculated for site HL on the native receptor.  fBinding energies were 
calculated for site HL on the native receptor. 


